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Abstract

The influence of viscous dissipation on entropy generation in fully developed forced convection for single-phase liquid flow in a circular
microchannel under imposed uniform wall heat flux has been studied. In the first-law analysis, closed form solutions of the radial temperature
profiles for the models with and without viscous dissipation term in the energy equation are obtained. In the second-law analysis, for different
Brinkman number and dimensionless heat flux, the variations of dimensionless entropy generation and Bejan number as a function of the radial
distance are investigated. The two models are compared by analyzing their relative deviations in dimensionless entropy generation and Bejan
number. Comparisons are also performed for average dimensionless entropy generation and average Bejan number. Contribution of heat transfer
irreversibility and fluid friction irreversibility to the deviations is analyzed and discussed. It is found that, under certain conditions, the effect of
viscous dissipation on entropy generation in microchannel is significant and should not be neglected.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Fluid transport in microchannels plays a vital role in a
wide variety of contemporary engineering applications, involv-
ing micro-scale devices such as micropumps, microvalves and
microsensors. Particularly, the application of microchannels in
electronic cooling is becoming tremendously important due to
the increasingly high-flux heat generation from high-speed mi-
croprocessors. The extensive use of microchannels, therefore,
has promoted abundant studies on their fluid flow and heat
transfer characteristics. In addition to the analysis based on
the basic conservation laws, the second-law analysis is essen-
tial in understanding the entropy generation, which is attributed
to the thermodynamic irreversibility. This kind of thermody-
namic analysis is useful for studying the optimum operating
conditions, which help in designing a system with less entropy
and destruction of available work (exergy), in accordance to
the Gouy–Stodola theorem stating that the lost available work
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is directly proportional to the entropy generation. Bejan [1]
referred this method of engineering research as Entropy Gen-
eration Minimization (EGM) and discussed its derivations and
applications in a vast coverage of applied thermal engineering.
The importance of understanding the intricacies of entropy gen-
eration in heat transfer devices has attracted much attention
henceforth. From the point of view of an engineering design
consideration, the performance evaluation criteria, such as heat
transfer surface performance based on the second law of ther-
modynamics [2] are intimately related to entropy generation
assessments.

Viscous dissipation manifests itself as an appreciable rise in
fluid temperature due to the conversion of kinetic motion of the
fluid to thermal energy, and features as a source term in the fluid
flow. This effect is of particular significance in fluid flow and
heat transfer in microchannel whose length-to-diameter ratio is
considerably large. The importance of viscous dissipation can
be quantified by a dimensionless number, i.e. Brinkman num-
ber, which is defined as the ratio of the heat generation due
to viscous forces to the heat transferred from the wall to the
fluid. Tso and Mahulikar [3] proposed Brinkman number as a
parameter for correlating the convective heat transfer parame-
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Nomenclature

Ac cross-sectional area . . . . . . . . . . . . . . . . . . . . . . . . m2

Be Bejan number
Be average Bejan number
Br′ Brinkman number based on uniform heat flux con-

dition
cp specific heat . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

DH hydraulic diameter of microchannel . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

m pertinent parameters, as defined in Eq. (29)
NS dimensionless entropy generation
N̄S average dimensionless entropy generation
Pe Péclet number
qw uniform wall heat flux . . . . . . . . . . . . . . . . . . W m−2

r radial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
r0 internal radius of microchannel . . . . . . . . . . . . . . . m
R dimensionless radial coordinate
Ṡ′′′

gen volumetric rate of entropy generation W m−3 K−1

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T̄ bulk mean temperature . . . . . . . . . . . . . . . . . . . . . . . K
u fluid velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

ū mean velocity of fluid . . . . . . . . . . . . . . . . . . . . m s−1

û dimensionless fluid velocity
x longitudinal coordinate . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

δ relative deviation of pertinent parameters, as
defined in Eq. (29) . . . . . . . . . . . . . . . . . . . . . . . . . . %

θ dimensionless temperature
μ fluid viscosity . . . . . . . . . . . . . . . . . . . . . . . . . N s m−2

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

φ irreversibility distribution ratio
Φ viscous dissipation function. . . . . . . . . . . . . . . . . s−2

ψ dimensionless heat flux

Subscripts

FF fluid friction
HT heat transfer
w value at wall
1 model with viscous dissipation
2 model without viscous dissipation
ters in microchannels. Brinkman number was used to explain
the unusual heat transfer behaviour in microchannels, which
significantly differs from that in the conventionally-sized chan-
nels. Later, they [4] performed experiments to verify the role of
Brinkman number in the laminar regime in microchannels. Judy
et al. [5], according to their experimental data, reported that vis-
cous dissipation induces significant effect of increasing the fluid
temperature along the microchannel length for decreasing di-
ameter and increasing fluid velocity. Koo and Kleinstreuer [6],
employing scale analyses and numerical solutions, investigated
the viscous dissipation effects on the evolution of tempera-
ture distributions for different working fluids and channel ge-
ometries, and concluded that the impact of viscous dissipation
on microchannel flow is significant and should be taken into
consideration for all experimental and computational analyses.
Morini [7] used a mathematical model to assess the significance
of viscous dissipation in microchannel flows and declared that
the viscous dissipation effect is important for liquid flows when
the hydraulic diameter is less than 100 µm. Hetsroni et al. [8]
discussed the effect of viscous dissipation which may lead to
drastic change of flow and temperature fields in microchannels
under certain conditions. It is validated from previous studies
that the effect of viscous dissipation is significant in the first-
law analysis of fluid transport in microchannels, in which the
main concern is the flow and temperature distributions. Judg-
ing from this, it is instructive to conceive that in the second-law
analysis, the viscous dissipation effect should also be taken into
consideration in the derivation of the entropy generation rate
in microchannels, which is strongly dependent on the flow and
temperature fields of the fluid.

Many of the existing analytical studies on entropy genera-
tion in macro-scale channel and duct flow passages neglected
the effect of viscous dissipation in the energy equation, such as
those in [9–17]. On the contrary, there exist a very small num-
ber of studies that dealt with entropy generation related prob-
lems in micro-scale channels. Richardson et al. [18] explored
the existence of irreversibility extrema in the laminar flow re-
gion inside straight microchannels with irregular cross sections.
They solved the momentum and energy equations numerically.
However, the viscous dissipation term was not considered in the
energy equation. Recently, Erbay et al. [19] investigated the en-
tropy generation in parallel plate microchannels induced by the
transient laminar forced convection in the combined entrance
region numerically. On the other hand, Abbassi [20] analyzed
analytically the entropy generation in a uniformly heated rect-
angular microchannel heat sink by applying a porous medium
model based on extended Darcy equation for fluid flow and
two-equation model for heat transfer. However, the viscous dis-
sipation term was neglected in the energy equation for the fluid
phase in these studies. The rationale of neglecting viscous dissi-
pation effect in the energy equation (first-law analysis) is ques-
tionable as the fluid friction irreversibility due to frictional heat-
ing of viscous dissipation plays a vital role in the second-law
analysis. In addition, it is indisputable that the entropy genera-
tion is strongly dependent on the temperature field of the fluid,
which is intimately related to the irreversible energy conver-
sion from viscous dissipation in the fluid. In view of this, it
is well worth investigating the effect of viscous dissipation in
the energy equation on the entropy generation derived from the
second-law analysis in microchannels.

The primary concern of the present study is to compare the
characteristics of the entropy generation in single-phase liquid
flow in a circular microchannel between the models with and
without viscous dissipation term in the energy equation. Em-



1028 Y.-M. Hung / International Journal of Thermal Sciences 48 (2009) 1026–1035
ploying the first principles to the hydrodynamically and ther-
mally fully developed laminar flow, closed form solutions for
the velocity and temperature distributions in the radial direc-
tion are obtained and then utilized in the computation of the
local and average dimensionless entropy generation and Bejan
number. Their characteristics and deviations from those without
considering viscous dissipation are analyzed and discussed.

2. Mathematical formulation

2.1. First-law analysis

In dealing with single-phase liquid flows in microchannels,
the flowing fluids are treated as continuous media and the con-
tinuum approximation employed in the conventional macro-
scale flow system is applicable. Gad-el-Hak [21] pointed out
that the traditional results obtained for macro-scale flow are
applicable in channels larger than 1 µm. Following this, for a
circular microchannel with internal radius r0, under steady-state
and fully developed conditions, the velocity profile of laminar
flow for incompressible Newtonian fluid passing through the
microchannel is given by the Hagen–Poiseuille expression as

u = 2ū

[
1 −

(
r

r0

)2]
(1)

where ū is the mean velocity over the cross section area of the
microchannel. For constant fluid properties, the energy equation
is expressed as [22]

ρcpu
∂T

∂x
= k

r

∂

∂r

(
r
∂T

∂r

)
+ μ

(
∂u

∂r

)2

(2)

where T is the temperature of the working fluid, cp , k and μ

are the specific heat, thermal conductivity and viscosity of the
fluid, respectively. According to Wang and Peng [23], to sim-
ulate the heat generated by electronic components, the applied
heat flux from the wall of the microchannel is rationally as-
sumed to be uniformly distributed. Following this, under a fully
developed thermal condition with uniformly heated boundary
wall, the longitudinal conduction term is absent in the energy
equation since its contribution to the net energy transfer is neg-
ligible [22,24]. Taking into account the frictional heating due
to viscous dissipation, this effect is incorporated as the second
term on the right-hand side in Eq. (2). The thermal boundary
condition at the wall of the microchannel is expressed as

k
∂T

∂r

∣∣∣∣
r=r0

= qw (3a)

where qw is the uniform heat flux applied at the wall. Another
condition is the symmetric condition at the centre, which is
written as

∂T

∂r

∣∣∣∣
r=0

= 0 (3b)

The bulk mean temperature T̄ is defined as

T̄ = 2

r2
0 ū

r0∫
uTr dr (4)
0

For uniformly heated wall condition and thermally fully devel-
oped flow, the temperature gradient along the axial direction is
defined classically as

∂T

∂x
= dT̄

dx
(5)

which is independent of the radial direction. Integrating Eq. (2)
over the cross section of the microchannel gives

ρcp
∂

∂x

r0∫
0

uTr dr = kr
∂T

∂r

∣∣∣∣
r0

0
+ μ

r0∫
0

(
∂u

∂r

)2

r dr (6)

By utilizing Eqs. (1), (3), (4) and (5), Eq. (6) can be simplified
as

ρcpū
dT

dx
= 2

r2
0

(qwr0 + 4μū2) (7)

which conforms to the energy balance over the cross section of
the microchannel. In the case of thermally fully developed con-
dition with uniform wall heat flux, from Eq. (7), it is observed
that the axial temperature gradient is reduced to a constant. By
introducing the following dimensionless variables

R = r

r0
, û = u

ū
, θ = k(T − Tw)

qwDH
(8)

where DH is the hydraulic diameter of microchannel and Tw
denotes the wall temperature, and utilizing the energy balance
relation in Eq. (7), Eq. (2) is nondimensionalized as

1

R

d

dR

(
R

dθ

dR

)
= (1 + 8Br′)û − Br′

(
dû

dR

)2

(9)

where the term on the left-hand side corresponds to radial con-
duction while the first term and second term on the right-hand
side are related to convection and viscous dissipation, respec-
tively. Br′is the modified Brinkman number based on the uni-
form heat flux condition [24], a measure of the importance of
the viscous dissipation term, defined as

Br′ = μū2

qwDH
(10)

The dimensionless boundary conditions required for solving
Eq. (9) are

θ(1) = 0 (11a)
dθ(0)

dR
= 0 (11b)

Substituting the dimensionless velocity profile and its gradient
into Eq. (9) and solving it yields the closed form dimensionless
temperature profile as

θ1(R) = −1

8
(1 + 16Br′)R4

+ 1

2
(1 + 8Br′)R2 − 3

8

(
1 + 16

3
Br′

)
(12)

For the case when the viscous dissipation term is neglected in
the energy equation, i.e. Br′ = 0, the dimensionless temperature
profile becomes

θ2(R) = −1
R4 + 1

R2 − 3
(13)
8 2 8
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Hereafter, for the purpose of comparison of results, the model
with viscous dissipation term incorporated in the energy equa-
tion is denoted as Model 1 (with subscript 1) and that without
viscous dissipation term in the energy equation as Model 2
(with subscript 2).

2.2. Second-law analysis

Entropy is generated due to the presence of irreversibility,
and entropy generation is adopted as a quantitative measure of
the irreversibility associated with a process. The volumetric rate
of entropy generation which arises due to the heat transfer and
fluid friction losses, is expressed as [1]

Ṡ′′′
gen = Ṡ′′′

gen,HT + Ṡ′′′
gen,FF = k

T 2
(∇T )2 + μ

T
Φ (14)

where Φ is the viscous dissipation function. The first term on
the right-hand side of Eq. (14) is attributable to the heat transfer
in the direction of finite temperature gradients while the second
term on the right-hand side is due to the viscous effects of fluid
friction. In the present study, for fully developed forced convec-
tion in a circular microchannel, the volumetric rate of entropy
generation reduces to

Ṡ′′′
gen = k

T 2

[(
∂T

∂x

)2

+
(

∂T

∂r

)2]
+ μ

T

(
∂u

∂r

)2

(15)

Following this, the dimensionless entropy generation (for
Model 1) is derived as

NS1 = Ṡ′′′
genr

2
0

k
=

(
ψ

1 + ψθ1

)2[(
dθ1

dR

)2

+ 4(1 + 8Br′)2

Pe2

]

+ Br′
(

ψ

1 + ψθ1

)(
dû

dR

)2

= 16
{
(16Br′ + 1)(8Br′ + 1)R6 − 4(8Br′ + 1)2R4

+ 4
[
32Br′ + 2Br′(8/ψ + 5) + 1

]
R2

+ 16(8Br′ + 1)2/Pe2}
/[

(16Br′ + 1)R4 − 4(8Br′ + 1)R2

+ 16Br′ − 8/ψ + 3
]2 (16)

where

ψ = qwDH

kTw
(17)

is denoted as dimensionless heat flux, and

Pe = ρcpūDH

k
(18)

is Péclet number, indicating the relative importance between
convection and conduction. The dimensionless entropy genera-
tion due to conductive heat transfer in radial and axial directions
is correspondingly expressed as

NHT1 =
(

ψ

1 + ψθ1

)2[(
dθ1

dR

)2

+ 4(1 + 8Br′)2

Pe2

]

= 16
[
(16Br′ + 1)2R6 − 4(16Br′ + 1)(8Br′ + 1)R4

+ 4(8Br′ + 1)2R2 + 16(8Br′ + 1)2/Pe2]
/[
(16Br′ + 1)R4 − 4(8Br′ + 1)R2

+ 16Br′ − 8/ψ + 3
]2 (19)

and the dimensionless form of entropy generation contributed
by fluid friction is written as

NFF1 = Br′
(

ψ

1 + ψθ1

)(
dû

dR

)2

= −128Br′R2/[
(16Br′ + 1)R4 − 4(8Br′ + 1)R2

+ 16Br′ − 8/ψ + 3
]
. (20)

The relative significant contribution of these two terms is eval-
uated by the irreversibility distribution ratio φ, which is ex-
pressed as [1]

φ = Ṡ′′′
FF

Ṡ′′′
HT

= NFF

NHT
(21)

An alternative irreversibility distribution parameter, Bejan num-
ber Be, defined as the ratio of entropy generated due to heat
transfer to total entropy generation, is expressed as

Be1 = NHT

NS

= ( dθ1
dR

)2 + [2(1 + 8Br′)/Pe]2

( dθ1
dR

)2 + [2(1 + 8Br′)/Pe]2 + Br′(1 + ψθ1)(
dû
dR

)2/ψ

= [
(16Br′ + 1)2R6 − 4(16Br′ + 1)(8Br′ + 1)R4

+ 4(8Br′ + 1)2R2 + 16(8Br′ + 1)2/Pe2]
/{

(16Br′ + 1)(8Br′ + 1)R6 − 4(8Br′ + 1)2R4

+ 4
[
32Br′2 + 2(5 + 8/ψ)Br′ + 1

]
R2

+ 16(8Br′ + 1)2/Pe2} (22)

Be = 1 is the limit at which the irreversibility due to heat trans-
fer dominates while Be = 0 is the opposite limit where the irre-
versibility is solely attributed to fluid friction. For the case when
the viscous dissipation term is absent in the energy equation, by
following the procedures applied in Model 1, the dimensionless
entropy generation, its two components and Bejan number for
Model 2 are derived, respectively, as

NS2 =
(

ψ

1 + ψθ2

)2[(
dθ2

dR

)2

+ 4

Pe2

]

+ Br′
(

ψ

1 + ψθ2

)(
dû

dR

)2

= 16
{
(1 − 8Br′)R6 + 4(8Br′ + 1)R4

+ 4
[
2Br′(8/ψ − 3) + 1

]
R2 + 16/Pe2}

/(R4 − 4R2 − 8/ψ + 3)2 (23)

NHT2 =
(

ψ

1 + ψθ2

)2[(
dθ2

dR

)2

+ 4

Pe2

]

= 16[R6 − 4R4 + 4R2 + 16/Pe2]
/(R4 − 4R2 − 8/ψ + 3)2 (24)
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Fig. 1. Dimensionless temperature distribution as a function of radial direction
for different Brinkman number.

NFF2 = Br′
(

ψ

1 + ψθ2

)(
dû

dR

)2

= −128Br′R2/(R4 − 4R2 − 8/ψ + 3) (25)

Be2 = (dθ2/dR)2 + (2/Pe)2

(dθ2/dR)2 + (2/Pe)2 + Br′(1 + ψθ2)(dû/dR)2/ψ

= (R6 − 4R4 + 4R2 + 16/Pe2)/
{
(1 − 8Br′)R6

− 4(1 − 8Br′)R4

+ 4
[
2Br′(8/ψ − 3) + 1

]
R2 + 16/Pe2} (26)

The average dimensionless entropy generation and average Be-
jan number, over the circular cross section of the microchannel
Ac can be, respectively, computed by the following integrations

N̄S = 1

Ac

∫
Ac

NS dAc = 2

1∫
0

NSR dR, (27)

Be = 1

Ac

∫
Ac

BedAc = 2

1∫
0

BeR dR (28)

In order to compare Model 1 with Model 2, the relative devia-
tion (in percentage) of the pertinent parameters (NS,Be, N̄S,Be)
between these two models is quantified as

δ = m1 − m2

m1
× 100%, m = NS,Be, N̄S,Be (29)

3. Results and discussion

Fig. 1 shows the dimensionless temperature profiles, repre-
senting the temperature difference between the working fluid
and the wall of the microchannel, for different Brinkman num-
ber. With increasing Brinkman number, higher viscous heating
generated in proximity to the wall boundary intensifies the dif-
ference between the fluid temperature and the wall tempera-
ture. The temperature gradient becomes steeper, indicating that
heat transported from the wall to the fluid increases for higher
Brinkman number. Thus, from the first-law analysis, it is ob-
vious that the viscous dissipation induces significant effect on
Fig. 2. Dimensionless entropy generation as a function of Péclet number at
different radial distances.

the fluid temperature field when the Brinkman number is con-
siderably large, corresponding to the heat transfer behaviour in
microchannels.

As mentioned in the preceding section, the axial conduction
term in the energy equation, which is inversely proportional
to Péclet number Pe, is negligible in the current study. This
leads to a high value of Péclet number. Without loss of general-
ity, Pe−2 → 0 is thus adopted in the subsequent evaluations of
the dimensionless entropy generation and Bejan number. This
is justifiable from the exhibition of the effect of Péclet num-
ber on the dimensionless entropy generation NS, at different
radial distances in Fig. 2. The dimensionless entropy genera-
tion decreases with increasing Péclet number until it reaches
an asymptotic value. The order of magnitude of Péclet number
for typical working fluids in microchannels is generally ranged
from 103 to 104, in which the dimensionless entropy generation
can be deemed independent of Péclet number. Therefore, with
negligible effect of Péclet number, and according to Eqs. (16),
(22), (23) and (26), the Brinkman number Br′ and the dimen-
sionless heat flux ψ are the variable parameters in the dimen-
sionless entropy generation and Bejan number functions. Fol-
lowing this, it should be noted that zero value of velocity and
temperature gradients at the centerline will lead to singularities
in Bejan number (for both models) and the relative deviation δ

of the pertinent parameters, defined in Eqs. (22), (26) and (29),
respectively.

For the case when viscous dissipation effect is not included
in the energy equation, the volumetric rate of entropy genera-
tion rate can be expressed in terms of the irreversibility distri-
bution ratio φ as

Ṡ′′′
gen

kT 2
w

q2
w

= (1 + φ)[(2R − R3)2 + 16/Pe2]
[ψ(−R4/8 + R2/2 − 3/8) + 1]2

(30)

For Pe−2 → 0 and in the limit of ψ → 0, the dimensionless
radial entropy generation profiles as expressed in Eq. (30) are
plotted for different φ in Fig. 3. In this case, being independent
on the applied heat flux at the boundary wall, the dimensionless
entropy generation is ascribable to the irreversibility due to ra-
dial conductive heat transfer governed by the radial temperature
gradient and the irreversibility due to fluid friction governed
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Fig. 3. Radial entropy generation profiles for different irreversibility distribu-
tion ratio in the limit of Pe−2 → 0 and ψ → 0 when the viscous dissipation
effect is not included.

by the radial velocity gradient, as shown in Eq. (30). The di-
mensionless entropy generation is zero at the centerline region
due to zero velocity and temperature gradients in the centre of
the channel. The radial velocity gradient varies linearly with
the radial distance of the channel, implying that there is no in-
herent extremum in the fluid friction irreversibility across the
cross section, hence it can be observed that the dimensionless
entropy generation reaches its maximum at a fixed location at
R = √

2/3 for all values of φ corresponding to the occurrence
of maximum radial temperature gradient, attributed to the ef-
fect of wall curvature [25]. As φ increases, the viscous effect
becomes prominent and higher fluid friction irreversibility con-
tributes to higher entropy generation across the cross section.
For frictionless case with φ = 0, the radial entropy generation
profile is identical to the Ṡ′′′

genkT 2
0 /q2

w profile plotted by Bejan
[26] under the same hydrodynamic and thermal conditions for
a round smooth tube, where T0 is the absolute temperature at
a point of origin located on the tube axis. Under such circum-
stances, Eq. (30) is reduced to

Ṡ′′′
gen

kT 2
w

q2
w

= (2R − R3)2 (31)

demonstrating an expression which is identical with that de-
rived in [26]. To this end, as noticed that the dimensionless
entropy generation in the present study is dependent on the
Brinkman number Br′ and the dimensionless heat flux ψ , the
analysis of the entropy generation in a microchannel is based
on the effect of viscous dissipation, which is characterised by
the Brinkman number and the effect imposed by the dimension-
less heat flux. Attention is focused on the comparison between
the models with and without considering viscous dissipation ef-
fect by analyzing their relative deviations in local and average
dimensionless entropy generation and Bejan number, which are
discussed in the following.

3.1. Effect of viscous dissipation

Figs. 4(a) and 4(b) show the radial dimensionless entropy
generation and Bejan number distributions at a fixed value of
dimensionless heat flux (ψ = 0.1) for Br′ = 0.1 and Br′ = 0.7,
respectively. The relative deviations of dimensionless entropy
generation and Bejan number between Model 1 and Model 2,
as defined in Eq. (29), are also depicted in the figures. Entropy
generation increases tremendously from zero at the centre of
the channel to a maximum value at the wall. This is due to the
velocity and temperature gradients are zero at the centerline in
stark contrast to the comparatively high values in the vicinity of
the wall. Comparing Figs. 4(a) and 4(b), it is observed that the
dimensionless entropy generation (for both models) increases
with increasing Brinkman number. On the contrary, Bejan num-
ber shows the opposite trend, in which it is minimum at the
wall and peaks at the centre of the channel. This indicates that
the maximum entropy produced at the wall is mainly due to the
fluid friction irreversibility and compensated by the heat trans-
fer irreversibility towards the centre of the channel with zero
entropy generation. It is known that Ṡ′′′

HT will only surpass Ṡ′′′
FF

if Be > 0.5. Hence one can deduce that most of the entropy
generated in the microchannel (for both models) is attributed
to the fluid friction irreversibility when the dimensionless heat
flux ψ is small. If one compares the Bejan number distributions
for Model 1 and Model 2, it is observed that for Model 1, Be-
jan number increases with higher Brinkman number whereas
for Model 2, Bejan number decreases as Brinkman number in-
creases. This indicates that with increasing Brinkman number,
the dominance of fluid friction irreversibility decreases and the
contribution of heat transfer irreversibility increases when the
viscous dissipation is taken into account in the energy equa-
tion. This phenomenon can be further explained by Figs. 5(a)
and 5(b), which show the distributions of dimensionless entropy
generation by heat transfer contribution NHT and dimension-
less fluid friction contribution NFF (for Model 1 and Model 2)
at ψ = 0.1 for different Brinkman number, respectively. NFF
displays zero value at the centerline and reaches a maximum
value at the wall of the channel. The high value of NFF adjacent
to the wall is contributed by the high near wall velocity gradi-
ent. For the case of small dimensionless heat flux, it is noted
that when Brinkman number is small (Br′ = 0.1), NFF1 and
NFF2 are almost overlapping, showing that the viscous dissipa-
tion effect on the fluid friction irreversibility is negligible, while
for higher Brinkman number (Br′ = 0.7), the viscous dissipa-
tion effect induced on the fluid friction irreversibility is also not
obvious in this case. Comparing Fig. 5(a) and Fig. 5(b), it is ob-
served that the magnitude of NHT is relatively small compared
to NFF, indicating that the contribution of the heat transfer ir-
reversibility to the total entropy generation is negligible in this
case. However, comparing Model 1 and Model 2, NHT1is sig-
nificantly higher than NHT2. This is because the heat transfer
irreversibility is strongly dependent on the temperature field, as
expressed in Eqs. (19) and (24). Neglecting viscous dissipation
effect in the first-law analysis will indirectly incur significant
deviation on the heat transfer irreversibility.

Examining the relative deviations of dimensionless entropy
generation and Bejan number between Model 1 and Model 2 in
Figs. 4(a) and 4(b), one can observe that the relative deviation of
NS is relatively insignificant (less than 10%) at small Brinkman
number (Br′ = 0.1), whereas for larger Brinkman number
(Br′ = 0.7), the relative deviation increases and amounts to a
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(a) (b)

Fig. 4. Dimensionless entropy generation and Bejan number distributions in the radial direction at ψ = 0.1 for (a) Br′ = 0.1, (b) Br′ = 0.7.

(a) (b)

Fig. 5. Dimensionless entropy generation due to (a) heat transfer irreversibility, and (b) fluid friction irreversibility, at ψ = 0.1 for different Brinkman number.
maximum of about 40% adjacent to the centerline. This indi-
cates that the relative deviation of NS increases with increasing
Brinkman number. For Bejan number, the relative deviation be-
tween Model 1 and Model 2 is prominent (more than 60% and
90% over the cross section for Br′ = 0.1 and Br′ = 0.7, respec-
tively, except in the vicinity to the wall) indicating that viscous
dissipation significantly affect the Bejan number profile. This is
attributed to the strong dependence of heat transfer irreversibil-
ity on the fluid temperature distribution, as explained in the
preceding paragraph.

3.2. Effect of dimensionless heat flux

The dimensionless entropy generation and Bejan number in-
crease in value, when the dimensionless heat flux rises to ψ =
0.4, as illustrated in Figs. 6(a) and 6(b). In this case, the contri-
bution of the heat transfer irreversibility becomes manifest and
the entropy generation is no more governed by the fluid friction
irreversibility, as shown in Figs. 7(a) and 7(b). Simultaneously,
with increasing dimensionless heat flux, the loss contributed by
fluid friction irreversibility (for both models) also increases and
the difference of fluid friction irreversibility between Model 1
and Model 2 is also enlarged. Due to the increasing impor-
tance of heat transfer irreversibility, and correspondingly the
increase in the difference of fluid friction irreversibility, the rel-
ative deviation on the entropy generation becomes much higher,
compared to the case of lower dimensionless heat flux. This
is manifested in Figs. 6(a) and 6(b), where there are dramatic
rises in the relative deviations of dimensionless entropy gen-
eration to more than 40% and 90% adjacent to the centerline
for Br′ = 0.1 and Br′ = 0.7, respectively. In the case of higher
dimensionless heat flux, viscous dissipation induces significant
effect on the temperature field, which in turn affects the heat
transfer irreversibility and fluid friction irreversibility in a more
extensive manner. Hence, higher relative deviation on the en-
tropy generation is observed when the dimensionless heat flux
increases.
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(a) (b)

Fig. 6. Dimensionless entropy generation and Bejan number distributions in the radial direction at ψ = 0.4 for (a) Br′ = 0.1, (b) Br′ = 0.7.

(a) (b)

Fig. 7. Dimensionless entropy generation due to (a) heat transfer irreversibility, and (b) fluid friction irreversibility, at ψ = 0.4 for different Brinkman number.
3.3. Average dimensionless entropy generation and Bejan
number

Fig. 8 plots average dimensionless entropy generation N̄S

and average Bejan number Be as a function of Brinkman num-
ber for fixed value of dimensionless heat flux (ψ = 0.1). The
relative deviations of average dimensionless entropy generation
and average Bejan number between Model 1 and Model 2, as a
function of Brinkman number, are also shown in the figure. It is
observed that the average dimensionless entropy generation (for
both models) increases with increasing Brinkman number. Av-
erage Bejan number (for both models) exhibits high value when
Brinkman number is very close to zero and decreases to a mini-
mum value, after which the average Bejan number for Model 1
increases with small gradient with increasing Brinkman number
whereas for Model 2, the average Bejan number slightly de-
creases as Brinkman number increases. For both models, except
for small Brinkman number, the distribution of average Be-
jan number matches the observation for local Bejan number, as
explained earlier in Section 3.1. As expected, the relative devia-
tions of average dimensionless entropy generation and average
Bejan number increase with increasing Brinkman number, at-
tributable to the increasing effect of viscous dissipation on the
heat transfer irreversibility, as explained earlier.

Fig. 9 illustrates the variations of average dimensionless en-
tropy generation N̄S and average Bejan number Be as well as
their relative deviations between Model 1 and Model 2, as a
function of dimensionless heat flux for fixed value of Brinkman
number (Br′ = 0.1). In the preceding discussion, it is known
that the contribution of heat transfer irreversibility and fluid
friction irreversibility increases with increasing dimensionless
heat flux. Hence, it is conceivable that the average dimension-
less entropy generation and average Bejan number (for both
models) increase with increasing dimensionless heat flux. This
also leads to a larger relative deviation of the average dimen-
sionless entropy generation when the dimensionless heat flux
increases, indicating that the viscous dissipation effect on the
entropy generation is more significant for higher dimensionless
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Fig. 8. Average dimensionless entropy generation and Bejan number distribu-
tions as a function of Br′ at ψ = 0.1.

Fig. 9. Average dimensionless entropy generation and Bejan number distribu-
tions as a function of ψ at Br′ = 0.1.

heat flux. On the other hand, the gradual decline in the relative
deviation of average Bejan number is due to the scaling effect
of the increasing value of the denominator in Eq. (29), in which
case the average Bejan number for Model 1 increases faster than
the difference with its counterpart for Model 2.

4. Conclusions

A mathematical model based on the first law and second law
of thermodynamics of circular microchannels during steady-
state operation has been developed, to investigate, primarily, the
effect of the viscous dissipation on the entropy generation as-
sessments and a better understanding of the physical problem
is reached. This investigation provides interesting insights into
the phenomena which take place in the comparison between
the models with and without viscous dissipation effect on the
assessments of entropy generation in microchannels. The anal-
ysis of entropy generation by examining the influence of the
pertinent parameters in this study would be a useful analytical
tool for engineering design and performance evaluation of such
heat exchange devices based on the second law of thermody-
namics which are essential for more effective use of available
energy by reducing the destruction of useful potential work. It
is found that in this study when the viscous dissipation is taken
into account, the temperature distribution is a strong function
of the Brinkman number. Consequently, the entropy genera-
tion, ascribable to the heat transfer irreversibility and fluid fric-
tion irreversibility, is also intimately related to the Brinkman
number under the influence of viscous dissipation. It is evident
that the relative deviation of dimensionless entropy generation
and Bejan number between the models with and without con-
sidering the viscous dissipation effect increases as Brinkman
number and dimensionless heat flux increase. The variations of
the relative deviations result from the effect induced by vis-
cous dissipation on the heat transfer irreversibility and fluid
friction irreversibility, which are the two major components of
entropy generation in channel flow. It can be concluded that
the influence of viscous dissipation on the entropy generation is
significant albeit not dominant especially for the cases of high
Brinkman number and dimensionless heat flux.
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[19] L.B. Erbay, M.M. Yalçin, M.Ş. Ercan, Entropy generation in parallel plate
microchannels, Heat Mass Transfer 43 (2007) 729–739.

[20] H. Abbassi, Entropy generation analysis in a uniformly heated microchan-
nel heat sink, Energy 32 (2007) 1932–1947.
[21] M. Gad-el-Hak, The fluid mechanics of microdevices – the Freeman
scholar lecture, J. Fluids Eng. 121 (1999) 5–33.

[22] A. Bejan, Convection Heat Transfer, third ed., Wiley, New York, 2004,
pp. 1–119.

[23] B.-X. Wang, X.F. Peng, Experimental investigation on liquid forced-
convection heat transfer through microchannels, Int. J. Heat Mass Trans-
fer 37 (1994) 73–82.

[24] W. Kays, M. Crawford, B. Weigand, Convective Heat and Mass Transfer,
fourth ed., McGraw Hill, New York, 2005, pp. 91–92.

[25] A. Bejan, A study of entropy generation in fundamental convective heat
transfer, J. Heat Transfer 101 (1979) 718–725.

[26] A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley-
Interscience, New York, 1982, pp. 98–105.


	A comparative study of viscous dissipation effect on entropy generation in single-phase liquid flow in microchannels
	Introduction
	Mathematical formulation
	First-law analysis
	Second-law analysis

	Results and discussion
	Effect of viscous dissipation
	Effect of dimensionless heat flux
	Average dimensionless entropy generation and Bejan number

	Conclusions
	References


